Neuroplasticity: functional MRI techniques

M.A. Rocca

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.

fMRI & MS Outline of the presentation

- Does fMRI disclose "sensible" changes in MS phenotypes?
- Which is the role of fMRI changes?
- Are those changes correlated with structural damage?
- Investigating the resting brain: a valuable approach?
- Function of the spinal cord GM?
- Can fMRI have a prognostic role?
- Can fMRI be useful to monitor treatment effects?

Rocca et al., Lancet Neurol 2005

fMRI & MS Adaptive role

3

2

BMS

L SMC vs T2 lesion volume: r = 0.78, p < 0.001

Rocca et al., Neurology 2010

Pediatric MS

t values

L SMC vs T2 lesion volume: r = 0.78, p < 0.001

Rocca et al., Hum Brain Mapp 2009

fMRI & MS Adaptive role

Object manipulation

Healthy subjects: object manipulation

MS patients: simple motor task

Filippi et al., NeuroImage 2004

MNS task

MNS task: patients vs controls

Simple and MNS tasks interaction: patients vs controls

Rocca et al., Neurology 2008

F MS day 1 vs baseline + day 4

L SMC, R MFG, SMA, CMA

L SMC, MFG, SMA, CMA

Rocca et al., Hum Brain Mapp 2007

fMRI & MS Maladaptive role

SPMS (reduced activations)

PPMS

STG

Rocca et al., Neurology 2010

Filippi et al., NeuroImage 2002

fMRI & MS Adaptive-Maladaptive role

MS patients vs controls

PASAT

IFG, MFG, IP cortex, STG, MTG, bilaterally; SMA; R anterior cingulate

Recall Task

IFG, MFG, STG, MTG, transverse TG, BG, bilaterally; R lateral premotor area; L thalamus

Mainero et al., NeuroImage 2004

fMRI & MS Impaired functional reserve

Controls vs CIS (Variable attentional control task)

Load-related abnormalities in the recruitment of putamen in CIS patients

Tortorella et al., MSJ 2013

RRMS patients (Go-NoGo task)

Bonnet et al., Neurology 2010

fMRI & MS fMRI vs structural damage

SII

SMA, CMA

Rocca et al., Ann Neurol 2002

r = 0.88p < 0.001

Average lesion MD [mm²s⁻¹]

MD of the NABT [mm²s⁻¹]

CMA

fMRI & MS fMRI vs structural damage

Increased connectivity in patients
 Similar connectivity in patients and controls

SMA to L primary SMC: CST LL (r = 0.64, p = 0.04) **R SMC to cerebellum:** DRT-FA (r = -0.73, p = 0.02) DRT-MD (r = 0.85, p = 0.004)

Rocca et al., Neurology 2007

2010

Radiology

Rocca et al.,

Connectivity coefficients vs CC and CST damage (r = -0.34 to 0.40)

fMRI & MS From regions to networks

Within-network abnormalities

Inter-network abnormalities

Rocca et al., Neurology 2012

fMRI & MS From regions to networks

L

HC

CP

CI

J DMN RS FC in progressive MS

MS connectome

R

recun

Correlations between \downarrow **DMN RS FC and:**

PASAT (r=0.42, p<0.001) **CC FA and JD** (r from 0.54 to 0.87, p<0.001) **Cingulum FA (r=0.83, p<0.001)**

Rocca et al., Neurology 2010

fMRI & MS From regions to networks

Intra/Inter-network abnormalities in pediatric MS

Intra-network abnormalities

A A (1)(1

CI vs. CP patients and healthy controls

CI explained by:

- cingulum FA
- CC MD
- R precuneus RS FC C-index=0.99

Rocca et al., Neurology 2014

Inter-network abnormalities

Rocca et al., Human Brain Mapp 2014

fMRI & MS Cervical cord

Progressive MS vs controls: p=0.003 SPMS vs PPMS: p=0.05

High

Low

Cord funct

Valsasina et al., JNNP 2010

postero-lateral

NF-MS

Functional over-recruitment.
Moderate loss of cross-sectional and longitudinal lateralization.

No functional over-recruitment. Complete loss of cross-sectional and longitudinal lateralization.

Rocca et al., Mult Scler 2012

fMRI & MS Prognosis

Unimpaired hand

Impaired hand

Impaired *vs*. unimpaired hand

One-year follow up

Good clinical recovery

			1000	and a	— —	-	1
	1	1					<u> </u>
<u></u>	ļ			1			!
Υ			1				
1							
- Che							
_							
7					<		
Ę					<		
R					<		P
				Ŀ	<		P

Poor clinical recovery

Mezzapesa et al., Hum Brain Mapp 2007

fMRI & MS Longitudinal changes CIS/R DLPFC 1 year activation change

Cognitively improved *vs* stable patients

Audoin et al., Mult Scler 2008

Early RRMS /L IPL 1 year activation change

Loitfelder et al., PlosOne 2014

fMRI & MS Monitoring treatment

aseline

Stroop task and rivastigmine

Parry et al., Brain 2003 **3, 4-diaminopyridine** *vs* placebo

Mainero et al., Neurology 2004

Controls

MS patients

Performance improvement vs fMRI activity

Tomassini et al., Neurorehabil Neural Repair 2012

fMRI & MS Monitoring treatment

Stroop task vs cognitive rehabilitation Stroop facilitation condition: TG vs CG

0 t values 10

Stroop interference condition: TG vs CG

Filippi et al., Radiology 2011

fMRI & MS Monitoring treatment

6 month follow up

*Depression **QoL

Parisi et al., MSJ 2014

L DLPFC anodal tDCS stimulation

fMRI & MS Multi-centre studies

Motor task

Cognitive task

Wegener et al., Eur J Neur 2007 Rocca et al., Hum Brain Mapp 2009

Rocca et al., Hum Brain Mapp 2014

fMRI & MS Conclusions

- Brain functional reorganization is a common phenomenon in MS patients independent of disease duration and clinical phenotype.
- Variable patterns of cortical rewiring with the potential to limit the functional consequences of tissue damage occur in MS patients, suggesting that their disability is likely to result from the balance between structural damage and brain reorganization, rather then being a mere reflection of tissue disruption.
- Together with adaptive plasticity, maladaptive plasticity can occur in brain systems, which contributes to accumulation of disability and cognitive impairment.
- Improved understanding of recovery mechanisms may guide the development of new recovery-oriented strategies in MS.